Peak Discharge Reduction attributable to Stormwater Harvesting

MS4 Statewide Summit June 18, 2013

What Counts as Stormwater Harvesting?

Excavated earthen areas or bioretention basins

Quantifying the Reduction in Peak Discharge

- Rainfall and runoff measurements at a Sierra Vista subdivision were collected by the USGS
- EPA's StormWater Management Model (SWMM)
 was used to model the subdivision and
 reproduced the observed runoff results within
 an acceptable level of error
- Several scales of stormwater harvesting were modeled with SWMM to obtain modeled runoff
 - Harvesting volume as approx. 10%, 25%, 50% and 86% of developed conditions runoff

The Stormwater Harvesting Factor

- The Basin Volume/Post-Developed Runoff Volume was plotted against modeled % peak discharge reduction.
- The resulting best fit equation can be used to estimate the peak discharge reduction for any given value of Basin Volume/Post-Developed Runoff Volume.
- The estimated % peak discharge reduction is the Stormwater Harvesting Factor

Table of Stormwater Harvesting Factors

Table 3.1 . Storm Water Harvesting Factors (H_{rp}) for Peak Discharge Rate Reduction Based on Volume Retained (X_{rp})

	X_{rp}	H_{rp}	5	X_{rp}	H_{rp}		X_{rp}	H_{rp}
	<0.10	0.000	<u> </u>	0.40	0.390	_	0.71	0.711
Volume	0.10	0.009	\	0.41	0.402		0.72	0.720
Retained	0.11	0.023	Dadinaktar	0.42	0.413		0.73	0.729
Retaired	0.12	0.037	Reductio	n _{0.43}	0.425		0.74	0.738
	0.13	0.051	in Peak	0.44	0.436		0.75	0.747
	0.14	0.064		0.45	0.447		0.76	0.756
	0.15	0.078	Discharge	0.46	0.458		0.77	0.765
	0.16	0.091		0.47	0.469		0.78	0.773
	0.17	0.104		0.48	0.480		0.79	0.782
	0.18	0.118		0.49	0.491		0.80	0.790
	0.19	0.131		0.50	0.502		0.81	0.799
(0.20	0.144)	0.51	0.513		0.82	0.807
20% Volume	0.21	0.157	14%	0.52	0.523		0.83	0.816
	0.22	0.170		0.53	0.534		0.84	0.824
Retention	0.23	0.183	Reduction	10.54	0.544		0.85	0.832
	0.24	0.196	in Peak	0.55	0.555		0.86	0.840
	0.25	0.208	III FEAK	0.56	0.565		0.87	0.848
	0.26	0.221	Discharge	0.57	0.575		0.88	0.856
	0.27	0.234	<u> </u>	0.58	0.586		0.89	0.864
	0.28	0.246		0.59	0.596		0.90	0.871
	0.29	0.259		0.60	0.606		0.91	0.879
	0.30	0.271		0.61	0.616		0.92	0.887
	0.31	0.283		0.62	0.626		0.93	0.894
	0.32	0.295		0.63	0.635		0.94	0.902
	0.33	0.308		0.64	0.645		0.95	0.909
	0.34	0.320		0.65	0.655		0.96	0.916
	0.35	0.332		0.66	0.664		0.97	0.923
	0.36	0.343		0.67	0.674		0.98	0.930
	0.37	0.355		0.68	0.683		0.99	0.938
	0.38	0.367		0.69	0.693	_	≥1.00	0.945
	0.39	0.379		0.70	0.702			

No Routing Required!

- All you need are:
 - Volume of stormwater harvesting
 - Volume of post-developed runoff
 - Pre- and post-developed conditions peak discharge values
- Well...maybe a little more in site design before living happily ever after